

 Skip to content

 Rahul Nath

 	Home
	Blog
	Archives
	YouTube
	- ASP NET
	- AWS
	- Azure
	- DevOps
	About

 	

 Search

	Log in
	Subscribe

 	
 Latest

	
 Android

	
 ASP.NET

	
 AutoFixture

	
 AWS

	
 Azure

	
 Azure DevOps

	
 Azure Key Vault

	
 Blogging

	
 Books

	
 Cypress

	
 Design

	
 Dotnet

	
 Dotnet-Core

	
 Essays

	
 Fitness

	
 FSharp

	
 Gadgets

	
 JavaScript

	
 Messaging

	
 Parenting

	
 Photography

	
 Productivity

	
 Programming

	
 RabbitMQ

	
 React

	
 Refactoring

	
 Review

	
 Security

	
 Serverless

	
 Speaking

	
 Testing

	
 Thoughts

	
 TipOW

	
 Tools

	
 Travelogue

	
 TypeScript

	
 WCF

	
 Web Api

	
 WF

	
 Windows Phone

	
 WPF

 Generating a Large PDF from Website Contents - Merging PDF Files

 Dynamically generate a PDF file for a CMS Website.

 Rahul Pulikkot Nath

 19 Sep 2017

 	

 Share on Twitter

	

 Share on Facebook

	

 Share on LinkedIn

	

 Share on Pinterest

	

 Share via Email

	

 Copy link

 Table of Contents

 Posts in this series
	Generating a Large PDF from Website Contents
	HTML to PDF, Bookmarks and Handling Empty Pages
	Merging PDF Files

In the previous post, Generating a Large PDF from Website Contents - HTML to PDF, Bookmarks and Handling Empty Pages, we saw how to generate a PDF from HTML and add bookmarks to the generated PDF files. The PDF file generated is for an individual section which now needs to be merged to form a single PDF file. The individual PDF files contain the relevant content for the section and related bookmarks, which needs to be combined into a single PDF file.
One of the important things to keep intact when merging is the document hierarchy. The Sections, Sub-Categories, and Categories should align correctly so that the final bookmark tree and the Table of Contents appear correctly. It is best to maintain the list of individual PDF document streams in the same hierarchy as required. Since we know the required structure right from the UI, this can be easily achieved by using a data structure similar as shown below
public class DocumentSection
{
 public MemoryStream PDFDocument {get; set;}

 public List<DocumentSection> ChildSections {get; set;}

 ... // Any additional details that you need
}

The above structure allows us to maintain a tree-like structure of the document. The structure is the same as that is provided to the user to select the PDF options. I used the iTextSharp library to merge PDF documents. To interact with the PDF, we first need to create a PdfReader object from the stream. Using the SimpleBookmark class, we can get the existing bookmarks for the PDF.
var pdfReader = new PdfReader(stream);
ArrayList bookmarks = SimpleBookmark.GetBookmark(pdfReader);

iText representation of bookmarks is a bit complex. It represents them as an ArrayList of Hashtables. The Hashtable has keys like Action, Title, Page, Kids, etc. Kids property represents child bookmarks and is the same ArrayList type. Since it was hard to work with this structure, I created a wrapper class to interact easily with the bookmarks.
public class Bookmark
{
 public Bookmark(
 string title, string destinationType, int pageNumber,
 float xLeft, float yTop, float zZoom)
 {
 Children = new List<Bookmark>();
 Title = title;
 PageNumber = pageNumber;
 DestinationType = destinationType ?? "XYZ";
 XLeft = xLeft;
 YTop = yTop;
 ZZoom = zZoom;
 PageBreak = false;
 }

 ... // Class properties for the constructor parameters

 public ArrayList ToiTextBookmark()
 {
 ArrayList arrayList = new ArrayList
 {
 ToiTextBookmark(this),
 };
 return arrayList;
 }

 private Hashtable ToiTextBookmark(Bookmark bookmark)
 {
 var kids = new ArrayList();
 var hashTable = new Hashtable
 {
 ["Action"] = "GoTo",
 ["Title"] = bookmark.Title,
 ["Page"] = $@"{bookmark.PageNumber} {bookmark.DestinationType}
 {bookmark.XLeft} {bookmark.YTop} {bookmark.ZZoom}",
 ["Kids"] = kids,
 };

 foreach (var childBookmark in bookmark.Children)
 {
 kids.Add(ToiTextBookmark(childBookmark));
 }

 return hashTable;
 }
}

Recursively iterating through the list of DocumentSections, I add all the bookmarks to a root Bookmark class. The root bookmark class represents the full bookmark of the PDF file. The PageNumber is offset using a counter variable. The counter variable is incremented by the number of pages in each of PDF section (pdfReader.NumberOfPages) as it gets merged to the bookmark root. This ensures that the bookmark points to the correct bookmark page in the combined PDF file.
The individual documents are then merged by iterating through all the generated document sections. Once done we get the final PDF as a byte array which is returned to the user.
public byte[] MergeSections(List<DocumentSection> documentSections, Bookmark bookmarkRoot)
{
 int pageNumber = 0;
 using (var stream = new MemoryStream())
 {
 var document = new Document();
 var pdfWriter = PdfWriter.GetInstance(document, stream);
 document.Open();
 var pdfContent = pdfWriter.DirectContent;
 MergeSectionIntoDocument(documentSections, document, pdfContent, pdfWriter, pageNumber);
 pdfWriter.Outlines = bookmarkRoot.ToiTextBookmark();
 document.Close();
 stream.Flush();
 return stream.ToArray();
 }
}

private void MergeSectionIntoDocument(
 List<DocumentSection> documentSections,
 Document document,
 PdfContentByte pdfContent,
 PdfWriter pdfWriter,
 int pageNumber)
{
 foreach (var documentSection in documentSections)
 {
 var stream = documentSection.DocumentStream;
 stream.Position = 0;
 var pdfReader = new PdfReader(stream);

 for (var i = 1; i <= pdfReader.NumberOfPages; i++)
 {
 var page = pdfWriter.GetImportedPage(pdfReader, i);
 document.SetPageSize(new iTextSharp.text.Rectangle(0.0F, 0.0F, page.Width, page.Height));
 document.NewPage();
 pageNumber++;
 pdfContent.AddTemplate(page, 0, 0);
 this.AddPageNumber(pdfContent, document, pageNumber);
 }

 if(documentSection.ChildSections.Any())
 MergeSectionIntoDocument(documentSection.ChildSections, document, pdfContent, pdfWriter, pageNumber);
 }
}

To generate a Table of Contents (ToC), we can use the root bookmark information. We need to manually create a PDF page, read the bookmark text and add links to the page with the required font and styling. iText provides API's to create custom PDF pages.
We are now able to generate a single PDF based on the website contents.

 Programming

 Rahul Pulikkot Nath

 Twitter

 Rahul Nath Newsletter

 Join the newsletter to receive the latest updates in your inbox.

 Your email address

 Subscribe

 Please check your inbox and click the link to confirm your subscription.

 Please enter a valid email address!

 An error occurred, please try again later.

 You might also like

 SNS→Lambda Or SNS→SQS→Lambda

 Paid
 Members
 Public

 Should you be processing messages directly from SNS to Lambda or via an SQS Queue? Learn the disadvantages of directly processing messages from SNS and how you can solve those by introducing an SQS Queue in the middle.

 Rahul Pulikkot Nath

 28 Sep 2022

 AWS

 Amazon SNS and AWS Lambda Triggers in .NET

 Paid
 Members
 Public

 Learn how to process SNS messages from AWS Lambda Function. We will learn how to set up and trigger a .NET Lambda Function using SNS, understand scaling and lambda concurrency and how to handle exceptions when processing messages.

 Rahul Pulikkot Nath

 26 Sep 2022

 AWS

 Rahul Nath Newsletter

 Join the newsletter to receive the latest updates in your inbox.

 Your email address

 Subscribe

 Please check your inbox and click the link to confirm your subscription.

 Please enter a valid email address!

 An error occurred, please try again later.

 	

 Twitter

	

 Facebook

	

 Instagram

	

 YouTube

	

 LinkedIn

	

 RSS

 Rahul Nath

 Programmer, Blogger, YouTuber, Runner

 Newsletter

 Your email address

 Subscribe

 Please check your inbox and click the link to confirm your subscription.

 Please enter a valid email address!

 An error occurred, please try again later.

 © 2024 Rahul Nath -
 Published with Ghost & Krabi

