

 Skip to content

 Rahul Nath

 	Home
	Blog
	Archives
	YouTube
	- ASP NET
	- AWS
	- Azure
	- DevOps
	About

 	

 Search

	Log in
	Subscribe

 	
 Latest

	
 Android

	
 ASP.NET

	
 AutoFixture

	
 AWS

	
 Azure

	
 Azure DevOps

	
 Azure Key Vault

	
 Blogging

	
 Books

	
 Cypress

	
 Design

	
 Dotnet

	
 Dotnet-Core

	
 Essays

	
 Fitness

	
 FSharp

	
 Gadgets

	
 JavaScript

	
 Messaging

	
 Parenting

	
 Photography

	
 Productivity

	
 Programming

	
 RabbitMQ

	
 React

	
 Refactoring

	
 Review

	
 Security

	
 Serverless

	
 Speaking

	
 Testing

	
 Thoughts

	
 TipOW

	
 Tools

	
 Travelogue

	
 TypeScript

	
 WCF

	
 Web Api

	
 WF

	
 Windows Phone

	
 WPF

 Generating a Large PDF from Website Contents - HTML to PDF, Bookmarks and Handling Empty Pages

 Dynamically generate a PDF file for a CMS Website.

 Rahul Pulikkot Nath

 16 Aug 2017

 	

 Share on Twitter

	

 Share on Facebook

	

 Share on LinkedIn

	

 Share on Pinterest

	

 Share via Email

	

 Copy link

 Table of Contents

 Posts in this series
	Generating a Large PDF from Website Contents
	HTML to PDF, Bookmarks and Handling Empty Pages
	Merging PDF Files

In the previous post, Generating a Large PDF from Website Contents we saw from a high level the approach taken to generate PDF files from a Content Management System (CMS) website. In this post, we will delve further into the details of each of those areas.
HTML To PDF
There are a lot of libraries and services that support converting HTML to PDF. We chose this mechanism mainly for keeping the content formatting simple and reusable. Most of the PDF data was to be structured like the website content. This means we can reuse (read copy/paste) the HTML styling for the PDF content as well.
We used Essential Objects HTML to PDF Converter library. Our website is hosted as an Azure Web App and the Essential Objects library does not work in the Azure sandbox environment. The Azure Sandbox restriction affects most of the HTML to PDF libraries. The recommended approach to use those libraries is to host the PDF conversion logic on an Azure Virtual Machine, which is what we also ended up doing. Alternatively, you can choose to use one of the HTML to PDF hosted services.
The below code snippet is what you need to convert an HTML URL endpoint to PDF. It uses the HtmlToPdf class from the EO.Pdf Nuget package. The HtmlToPdfOptions specifies various conversion and formatting options. You can set margin space, common headers, footers, etc. for the generated PDF content. It also provides extensibility points in the PDF conversion pipeline.
public FileContentResult Convert(string url)
{
 var pdfStream = new MemoryStream();
 var pdfDocument = new PdfDocument();
 var pdfOptions = this.GetPdfOptions();

 var result = HtmlToPdf.ConvertUrl(url, pdfDocument, pdfOptions);
 pdfDocument.Save(pdfStream);

 return new FileContentResult(pdfStream.ToArray(), "application/pdf");
}

HTML Formatting Tip
You might want to avoid content being split across multiple pages. E.g., images, charts, etc. In this cases, you can use the page-break- CSS property to adjust page breaks. Essentials objects honors the page-break-* settings and adjusts the content when converting into PDF.*
Bookmarks
A bookmark is a type of link with representative text in the Bookmarks panel in the navigation pane. Each bookmark goes to a different view or page in the document. Bookmarks are generated automatically during PDF creation from the table-of-contents entries of a document.
We generate a lot of small PDF files (per section and category/sub-category) and then merge them together to form the larger PDF. Each of the sections has one or more entries towards Table Of Contents (TOC). We decided to generate bookmarks first per each generated PDF. When merging the individual PDF, the bookmarks are merged first, and then the TOC is created from the full bookmark tree.
Bookmarks can be created automatically or manually using Essential Objects library. Most of the other libraries also provide similar functionality. Using the AutoBookmark property we can have bookmarks created automatically based on HTML header (H1-H6) elements. If this does not fit with your scenario, then you can create them manually. In our case, we insert hidden HTML tags to specify bookmarks. Bookmark hierarchy is represented using custom attributes as shown below.
Category 1
...
<a class="bookmark" id="TOC_Category1_Section1" name="Section1" tocParent="TOC_Category1"
 >Section 1
...
<a class="bookmark" id="TOC_Category1_Section2" name="Section2" tocParent="TOC_Category1"
 >Section 2
...

Once the PDF is created from the URL, we parse the HTML content for elements with bookmark class and manually add the bookmarks into the generated PDF. The GetElementsByClassName and the CreateBookmark methods help us to create bookmarks from the hidden HTML elements in the page.
{
 ...
 var result = HtmlToPdf.ConvertUrl(url, pdfDocument, pdfOptions);
 BuildBookmarkTree(pdfDocument, result);
 pdfDocument.Save(pdfStream);
 ...
}

private static void BuildBookmarkTree(PdfDocument pdfDocument, HtmlToPdfResult htmlToPdfResult)
{
 var bookmarkElements = htmlToPdfResult.HtmlDocument.GetElementsByClassName("bookmark");
 foreach (var htmlElement in bookmarkElements)
 {
 var bookmark = htmlElement.CreateBookmark();
 ... // Custom logic to build the bookmark hierarchy
 // based on custom attributes or whatever approach you choose.

 pdfDocument.Bookmarks.Add(bookmark);
 }
}

Handling Empty Pages
In our case, the content is from a CMS, and the user gets an option to select what categories/sub-categories and sections of data to be displayed in the generated PDF. At times it happens that some of the selected combinations might not have any data in the system. To avoid printing a blank page (or an error page) in the generated PDF, we can check the conversion result to check for the returned content. Whenever the content does not exists the HTML endpoint returns an EmptyResult class. At the PDF conversion side, you can check if the response is empty and accordingly perform your logic to ignore the generated PDF.
public static class HtmlToPdfResultExtensions
{
 public static bool IsEmptyResponse(this HtmlToPdfResult htmlToPdfResult)
 {
 return htmlToPdfResult != null &&
 htmlToPdfResult.HtmlDocument != null &&
 htmlToPdfResult.HtmlDocument.Body != null &&
 string.IsNullOrEmpty(htmlToPdfResult.HtmlDocument.Body.InnerText);
 }
}

Once the individual PDF files are created for each of the section and category/subcategory combination, we can merge them together to generate the full PDF. We will see in the next post how to merge the bookmarks together along with shifting the PDF pages and generating Table of Contents from the bookmarks.

 Programming

 Rahul Pulikkot Nath

 Twitter

 Rahul Nath Newsletter

 Join the newsletter to receive the latest updates in your inbox.

 Your email address

 Subscribe

 Please check your inbox and click the link to confirm your subscription.

 Please enter a valid email address!

 An error occurred, please try again later.

 You might also like

 SNS→Lambda Or SNS→SQS→Lambda

 Paid
 Members
 Public

 Should you be processing messages directly from SNS to Lambda or via an SQS Queue? Learn the disadvantages of directly processing messages from SNS and how you can solve those by introducing an SQS Queue in the middle.

 Rahul Pulikkot Nath

 28 Sep 2022

 AWS

 Amazon SNS and AWS Lambda Triggers in .NET

 Paid
 Members
 Public

 Learn how to process SNS messages from AWS Lambda Function. We will learn how to set up and trigger a .NET Lambda Function using SNS, understand scaling and lambda concurrency and how to handle exceptions when processing messages.

 Rahul Pulikkot Nath

 26 Sep 2022

 AWS

 Rahul Nath Newsletter

 Join the newsletter to receive the latest updates in your inbox.

 Your email address

 Subscribe

 Please check your inbox and click the link to confirm your subscription.

 Please enter a valid email address!

 An error occurred, please try again later.

 	

 Twitter

	

 Facebook

	

 Instagram

	

 YouTube

	

 LinkedIn

	

 RSS

 Rahul Nath

 Programmer, Blogger, YouTuber, Runner

 Newsletter

 Your email address

 Subscribe

 Please check your inbox and click the link to confirm your subscription.

 Please enter a valid email address!

 An error occurred, please try again later.

 © 2024 Rahul Nath -
 Published with Ghost & Krabi

